当前位置: 首页 >> 矿业技术 >> 选矿技术 >> 铁矿除硫工艺技术处理

铁矿除硫工艺技术处理

发布日期:2018-11-10   来源:矿道网   投稿者:csknanning   浏览次数:2546

选矿推荐

我国新疆、安徽、湖北、江苏等地的大部分铁矿石上都不同程度地含有磁黄铁矿;另外,我国从国外进口的部分铁矿石中磁黄铁矿含量也较高。为充分利用这结铁矿石资源,必须进行脱硫处理。但由于磁黄铁矿磁性较强而可浮性较差,且不同矿点的磁黄铁矿性质差异较大,目前国内尚无较成熟的工艺和药剂能很好地将其与磁铁矿分离。马鞍山矿山研究院经过长期的研究,研制出新型的活化剂MHH-1,经对国内、国外两种磁黄铁矿含量较高的磁铁矿(硫含量分别为10.07%和2.51%)进行试验,取得了良好的脱硫效果,最终铁精矿中的硫含量均降到了0.3%以下,满足了后续工艺对铁精矿质量的要求。
 
    一、某进口高硫铁矿石脱硫试验
   
    (一)矿石性质
   
    某进口高硫铁矿石全铁品位为60.97%、硫含量为2.51%,其中硫化矿以磁黄铁矿、黄铁矿为主,且磁黄铁矿含量较高。要利用该进口矿资源,必须对其进行脱硫工艺研究。矿石的多元素分析结果和铁物相分析结果分别见表1、表2。
 
表1  某进口矿原矿多元素分析结果%
元素
TFe
SFe
FeO
S
P
CaO
MgO
SiO2
Al2O3
As
烧减
含量
60.97
59.20
30.10
2.51
0.035
1.70
2.64
10.26
0.62
0.01
0.24

表2  某进口矿原矿铁物相分析结果%
相名
磁铁矿
赤褐铁矿
磁黄铁矿
黄铁矿
硅酸铁
碳酸铁
合计
铁含量
55.51
0.13
2.39
0.63
1.29
1.20
61.15
铁分布率
90.78
0.21
3.91
1.03
2.11
1.96
100.00

    (二)反浮选脱硫试验
 
    1、磨矿细度试验
 
    将原矿碎至2~0mm,磨至不同的细度,进行一粗二精反浮选脱硫试验。药剂制度为:粗选加H2SO4600g/t、MHH-1 200g/t、丁黄药240g/t、柴油26 g/t、2#油54 g/t,一精选加丁黄药120 g/t、柴油13 g/t、2油27 g/t,二精选加丁黄药80 g/t、柴油8 g/t、2#油17 g/t。试验结果列于表3。

表3  磨矿细度试验结果%
磨矿细度(-0.076mm)
产品名称
产率
硫品位
55
铁精矿
尾矿
原矿
87.88
12.12
100.00
0.61
16.58
2.55
65
铁精矿
尾矿
原矿
86.46
13.54
100.00
0.34
15.95
2.45
75
铁精矿
尾矿
原矿
84.85
15.15
100.00
0.29
14.85
2.50
85
铁精矿
尾矿
原矿
84.04
15.96
100.00
0.25
14.04
2.45

    表3的试验结果显示,随着磨矿细度的增加,铁精矿中的硫含量逐渐降低,当磨矿细度达到-0.076mm占75%时,精矿中的硫含量已降至0.29%,达到了小于0.3%的要求。但考虑到球团矿加工对铁精矿细度的要求以及实际生产中可能存在的波动等因素,选择磨矿细度为-0.076mm占85%。
   
    2、粗选条件试验
   
    (1)硫酸用量试验
   
    将原矿磨至-0.076mm占85%进行粗选硫酸用量试验,固定条件为:MHH-1200g/t、丁黄药240 g/t、柴油26 g/t、2#油54 g/t。试验结果列于表4。
 
表4  粗选硫酸用量试验结果
硫酸用量(g·t1
产品名称
产率
硫品位
0
铁精矿
尾矿
原矿
92.89
7.11
100.00
1.28
18.00
2.47
400
铁精矿
尾矿
原矿
91.65
8.35
100.00
0.96
19.52
2.51
600
铁精矿
尾矿
原矿
91.24
8.76
100.00
0.91
18.61
2.46
800
铁精矿
尾矿
原矿
91.05
8.95
100.00
0.90
18.21
2.45

    由表4试验结果可知,随着硫酸用量的增加,铁精矿中硫含量逐渐降低,但变化趋势较缓。根据试验结果,选择硫酸用量为600g/t。
   
     (2)活化剂试验
   
    活化剂是影响脱硫效果较为关键的药剂,特别是磁黄铁矿可浮性较差,采用适宜的活化剂将其活化尤为重要。为此,首先对活化剂进行选择,即对不加活化剂、用CuSO4作活化剂和用马鞍山矿山研究院研制的MHH-1作活化剂3种方案进行对比。试验采用与磨矿细度试验时相同的流程结构和药剂制度。试验结果列于表5。

表5  活化剂种类对比试验结果%
活化剂种类
用量(g·t1
产品名称
产率
硫品位
不加
 
铁精矿
尾矿
原矿
90.10
9.90
100.00
0.95
16.36
2.48
CuSO4
200
铁精矿
尾矿
原矿
87.91
12.09
100.00
0.89
14.23
2.50
MHH-1
200
铁精矿
尾矿
原矿
84.51
15.49
100.00
0.29
14.27
2.46

    由表5试验结果可以看出,不加活化剂和用CuSO4作活化剂,最终铁精矿中硫含量难以降到0.3%以下,而用MHH-1活化剂活化磁黄铁矿,反浮选效果较明显,最终铁精矿中的硫含量已降至0.29%,因此,选择MHH-1作为活化剂。
   
    选定MMH-1作为活化剂后,对其进行了粗选用量试验。试验中H2SO4、丁黄药、柴油、2#油用量固定为600、240、26、54g/t。试验结果列于表6。

表6  粗选MHH-1用量试验结果%
MHH-1用量(g·t1
产品名称
产率
硫品位
120
铁精矿
尾矿
原矿
91.86
8.14
100.00
1.16
16.95
2.45
200
铁精矿
尾矿
原矿
90.63
9.37
100.00
0.92
17.50
2.47
300
铁精矿
尾矿
原矿
90.58
9.42
100.00
0.92
16.99
2.43

    表6结果显示,MHH-1用量在200g/t以上后,脱硫效果基本不变,因此选择MHH-1用量为200g/t。
   
    (3)捕收剂试验
   
    首先进行了乙黄药和丁黄药作为捕收剂的粗选对比试验。试验固定条件为:H2SO600g/t、MHH-1 200g/t、柴油26g/t、2#油54 g/t。试验结果见表7。由试验结果可以看出,在其它条件下不变的前提下,采用乙黄药为捕收剂,粗选后铁精矿中的硫含量为1.65%,而采用丁黄药作为捕收剂,经粗选后,铁精矿中的硫已降至1.00%。因此,选择丁黄药作为捕收剂。

表7  黄药种类对比试验结果%
黄药种类
产品名称
产率
硫品位
乙黄药
(240g/t)
铁精矿
尾矿
原矿
93.50
6.50
100.00
1.65
14.00
2.45
丁黄药
(240g/t)
铁精矿
尾矿
原矿
91.08
8.92
100.00
1.00
17.38
2.46

    确定用丁黄药作为捕收剂后,对其进行了粗选用量试验。试验固定条件同上,试验结果列于表8。

表8  粗选丁黄药用量试验结果%
MHH-1用量(g·t1
产品名称
产率
硫品位
150
铁精矿
尾矿
原矿
91.93
8.07
100.00
1.21
16.73
2.46
200
铁精矿
尾矿
原矿
91.65
8.35
100.00
1.01
17.60
2.40
250
铁精矿
尾矿
原矿
91.00
9.00
100.00
0.97
17.55
2.46
300
铁精矿
尾矿
原矿
90.97
9.03
100.00
0.94
17.50
2.44

    由表8可以看出,随着丁黄药用量的增加,铁精矿中硫含量逐渐降低,当丁黄药用量达到250g/t时,再增加其用量,铁精矿中硫含量下降趋势变缓,因此,选择粗选丁黄药用量为250g/t。
   
    根据类似矿石的生产实践和有关对磁黄铁矿进行反浮选的研究成果,柴油能起到辅助并强化捕收剂磁黄铁矿的作用,因此,进行了粗选柴油用量试验。试验固定条件为:H2SO4 600g/t、MHH-1 200g/t、丁黄药250g/t、2#油54g/t。试验结果列于表9。由试验结果可知,添加柴油后,脱硫效果明显改善,其粗选用量选择为26g/t。
   
表9  粗选柴油用量试验结果%
MHH-1用量(g·t1
产品名称
产率
硫品位
0
铁精矿
尾矿
原矿
96.37
3.63
100.00
1.82
19.83
2.47
13
铁精矿
尾矿
原矿
92.88
7.12
100.00
1.35
16.71
2.44
26
铁精矿
尾矿
原矿
91.02
8.98
100.00
0.99
17.26
2.45
40
铁精矿
尾矿
原矿
90.95
9.05
100.00
0.95
17.68
2.46
 
    (4)2#油用量试验
   
    采用2#油作为起泡剂,进行了粗选用量试验。试验固定条件为:H2SO4 600g/t、MHH-1200g/t、丁黄药250 g/t、柴油26 g/t。试验结果列于表10。根据试验结果,选择粗选2#油用量为54 g/t。
   
表10  粗选2#油用量试验结果%
MHH-1用量(g·t1
产品名称
产率
硫品位
27
铁精矿
尾矿
原矿
93.25
6.75
100.00
1.39
17.38
2.47
54
铁精矿
尾矿
原矿
91.02
8.98
100.00
0.99
17.26
2.45
80
铁精矿
尾矿
原矿
90.85
9.15
100.00
0.98
17.05
2.45
 
    3、反浮选试验
   
    在粗选条件试验的基础上,经过精选次数、精选药剂制度等一系列探索试验,按-0.076mm占85%的磨矿细度和表11所列药剂制度进行了反浮选脱硫一粗二精流程试验,结果见表12。

表11  反浮选流程试验药剂制度
药剂种类
药剂用量/(g·t1
粗选
一精选
二精选
H2SO4
MHH-1
丁黄药
柴油
2
600
200
250
26
54
 
 
120
13
27
 
 
80
8
17

表12  反浮选流程试验结果%
产品名称
产率
品位
回收率
TFe
S
TFe
S
铁精矿
尾矿
原矿
83.97
16.03
100.00
64.35
42.86
60.90
0.25
14.03
2.46
88.72
11.28
100.00
8.54
91.46
100.00

    由表12可知,该进口铁矿石经采用MHH-1新型活化剂反浮选脱硫后,可获得硫含量为0.25%的铁精矿产品,但其全铁品位尚可提高,故拟对其进行脱泥以提高铁品位。
   
    (三)反浮选铁精矿脱泥试验
   
    将全铁品位64.35%的反浮选铁精矿采用立式磁重分选机进行脱泥试验,以进一步提高铁品位,其试验结果见表13。
 
表13  脱泥试验结果%
产品名称
产率
铁品位
铁收率
铁精矿
尾矿
原矿
95.33
4.67
100.00
66.08
29.12
64.35
97.89
2.11
100.00

    由试验结果可知,反浮选精矿经脱泥后,铁品位可以从64.35%提高至66.08%,其作业回收率为97.89%。
   
    (四)反浮选-脱泥全流程试验
   
    试验流程见图1,反浮选部分的药剂制度见前面表11,试验结果见表14。
 
 
 
图1  某进口铁矿时反浮选-脱泥试验流程
 
表14  反浮选-脱泥全流程试验结果%
产品名称
产率
品位
回收率
TFe
S
TFe
S
铁精矿
尾矿
原矿
90.05
19.95
100.00
66.08
40.10
60.90
0.24
11.38
2.46
86.86
13.14
100.00
7.72
92.28
100.00

    由表14可知,该进口矿石磨至-0.076mm占85%,经反浮选-脱泥工艺选别扣,可以获得产率为80.05%,铁品位为66.08%、硫含量为0.24%的铁精矿。目前,该研究成果已成功转化为工业生产。
   
    二、结论
   
    (一)采用马鞍山矿山研究院研制的MHH-1新型活化剂,其脱硫效果明显优于CuSO4等活化剂。
   
    (二)MHH-1活化剂具有用量少、成本低等优点,能有效解决目前许多矿山因铁矿石中含有磁黄铁矿而使精矿硫含量较高的问题,为矿山提铁降硫提供了新途径。
【免责声明】本站“矿道网”矿业技术板块所有投稿文章,文章其版权均归原作者及投稿人所有。本站并非以盈利为核心的矿业矿业技术传播平台,平台并不能很好的甄别投稿文章的原创性和审核作者。文章仅供读者作为矿业参考,不做交易和服务的根据。所以希望投稿人自觉遵守本条例,如果一旦发生文章侵权,原作者找到我们,我们有权利不经告知并删除投稿的文章。本网站默认已许可各大主流平台、媒体等,以数字化方式复制、汇编、发行、信息网络传播本网站全文,但是需要文件授权。本网站不以此盈利,登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。所有投稿人向本网站提交文章发表之行为视为同意上述声明。如有异议,请在投稿时说明。因投稿素材内容或要求转发内容引发的任何社会及法律纠纷和矿道网无关。特此声明!,我们若有不当信息或者侵犯了您的利益,请及时联系我们删改!联系电话:029-85212477
2546

帮助过的人数

上一篇: 氰冶工艺流程

下一篇: 含金矿石的浮选药剂制度实例

 
 
[ 矿业技术搜索 ]  [ 加入收藏 ]  [ 打印本文 ]  [ 关闭窗口 ]

 
相关矿业技术
热门标签
大家都在看!
 
取消

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦